Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.006
Filtrar
1.
Can Vet J ; 65(5): 473-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694736

RESUMO

Objective: To compare the perioperative opioid requirements among dogs receiving an erector spinae plane (ESP) block with bupivacaine, with or without dexmedetomidine, and a control group. Animals and procedure: Thirty client-owned, healthy adult dogs undergoing hemilaminectomy were included in this randomized, prospective, blinded clinical study. Dogs were randomly assigned to 1 of 3 treatment groups: Group B, ESP block with bupivacaine; Group BD, ESP block with bupivacaine and dexmedetomidine; and Group C, control. Rescue intra- and postoperative analgesia consisted of fentanyl and methadone, respectively. Postoperative pain was evaluated using the short form of the Glasgow Composite Measure Pain Scale (CMPS-SF). Results: In Group BD, 0/10 dogs required intraoperative fentanyl, compared to 9/10 in Group C (P < 0.001), whereas 1/10 required postoperative methadone, compared to 9/10 in Group B (P = 0.003) and 10/10 in Group C (P < 0.001). The total amount of intraoperative fentanyl (µg/kg) was 0 (0 to 4) in Group B and 0 (0 to 0) in BD, compared to 6 (0 to 8) in C (P = 0.004 and P < 0.001, respectively). Postoperative methadone (mg/kg) required during the first 12 h was 0.5 (0 to 1.4) in Group B (P = 0.003) and 0 (0 to 0) in BD (P < 0.001), compared to C (P = 0.003 and P < 0.001, respectively). Conclusion: An ESP block with bupivacaine, with or without dexmedetomidine, was associated with a reduction in perioperative opioid consumption and provided effective acute pain control.


Effets analgésiques périopératoires du bloc des érecteurs du rachis avec de la bupivacaïne ou de la bupivacaïne-dexmédétomidine chez les chiens subissant une hémilaminectomie: un essai contrôlé randomisé. Objectif: Comparer les besoins périopératoires en opioïdes chez les chiens recevant un bloc des érecteurs de la colonne vertébrale (ESP) avec de la bupivacaïne, avec ou sans dexmédétomidine, et un groupe témoin. Animaux et procédure: Trente chiens adultes en bonne santé appartenant à des clients subissant une hémilaminectomie ont été inclus dans cette étude clinique randomisée, prospective et en aveugle. Les chiens ont été répartis au hasard dans 1 des 3 groupes de traitement: groupe B, bloc ESP avec bupivacaïne; groupe BD, bloc ESP avec bupivacaïne et dexmédétomidine; et groupe C, témoin. L'analgésie de secours peropératoire et postopératoire consistait respectivement en fentanyl et en méthadone. La douleur postopératoire a été évaluée à l'aide du formulaire abrégé de l'échelle de mesure de la douleur de Glasgow (CMPS-SF). Résultats: Dans le groupe BD, 0/10 chiens ont eu besoin de fentanyl peropératoire, contre 9/10 dans le groupe C (P < 0,001), tandis que 1/10 ont eu besoin de méthadone postopératoire, contre 9/10 dans le groupe B (P = 0,003) et 10/10 dans le groupe C (P < 0,001). La quantité totale de fentanyl peropératoire (µg/kg) était de 0 (0 à 4) dans le groupe B et de 0 (0 à 0) dans le groupe BD, contre 6 (0 à 8) dans le groupe C (P = 0,004 et P < 0,001, respectivement). La méthadone postopératoire (mg/kg) nécessaire au cours des 12 premières heures était de 0,5 (0 à 1,4) dans le groupe B (P = 0,003) et de 0 (0 à 0) dans le groupe BD (P < 0,001), par rapport au groupe C (P = 0,003). et P < 0,001, respectivement). Conclusion: Un bloc ESP avec de la bupivacaïne, avec ou sans dexmédétomidine, a été associé à une réduction de la consommation peropératoire d'opioïdes et a permis un contrôle efficace de la douleur aiguë.(Traduit par Dr Serge Messier).


Assuntos
Anestésicos Locais , Bupivacaína , Dexmedetomidina , Laminectomia , Bloqueio Nervoso , Dor Pós-Operatória , Animais , Cães , Bupivacaína/administração & dosagem , Bupivacaína/uso terapêutico , Dexmedetomidina/administração & dosagem , Dexmedetomidina/farmacologia , Dor Pós-Operatória/veterinária , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Bloqueio Nervoso/veterinária , Masculino , Feminino , Anestésicos Locais/administração & dosagem , Anestésicos Locais/uso terapêutico , Laminectomia/veterinária , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Fentanila/administração & dosagem , Fentanila/farmacologia , Fentanila/uso terapêutico , Doenças do Cão/cirurgia , Doenças do Cão/tratamento farmacológico , Estudos Prospectivos
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731821

RESUMO

In contrast to cats and dogs, here we report that the α2-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.75, 1, 1.5, 2, and 3 mg/kg, i.p.) caused vomiting in shrews in a bell-shaped and dose-dependent manner, with a maximum frequency (0.85 ± 0.22) at 1 mg/kg, which was accompanied by a key central contribution as indicated by increased expression of c-fos, serotonin and substance P release in the shrew brainstem emetic nuclei. Our comparative study in shrews demonstrates that clonidine (0, 0.1, 1, 5, and 10 mg/kg, i.p.) and dexmedetomidine (0, 0.01, 0.05, and 0.1 mg/kg, i.p.) not only suppress yohimbine (1 mg/kg, i.p.)-evoked vomiting in a dose-dependent manner, but also display broad-spectrum antiemetic effects against diverse well-known emetogens, including 2-Methyl-5-HT, GR73632, McN-A-343, quinpirole, FPL64176, SR141716A, thapsigargin, rolipram, and ZD7288. The antiemetic inhibitory ID50 values of dexmedetomidine against the evoked emetogens are much lower than those of clonidine. At its antiemetic doses, clonidine decreased shrews' locomotor activity parameters (distance moved and rearing), whereas dexmedetomidine did not do so. The results suggest that dexmedetomidine represents a better candidate for antiemetic potential with advantages over clonidine.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Antieméticos , Clonidina , Dexmedetomidina , Musaranhos , Vômito , Ioimbina , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Clonidina/farmacologia , Clonidina/análogos & derivados , Clonidina/uso terapêutico , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Vômito/tratamento farmacológico , Vômito/induzido quimicamente , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Ioimbina/farmacologia , Modelos Animais de Doenças , Masculino , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Eméticos/farmacologia
3.
BMC Anesthesiol ; 24(1): 167, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702608

RESUMO

The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Eletroencefalografia , Ketamina , Propofol , Sevoflurano , Animais , Camundongos , Ketamina/farmacologia , Ketamina/administração & dosagem , Sevoflurano/farmacologia , Sevoflurano/administração & dosagem , Dexmedetomidina/farmacologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Propofol/farmacologia , Propofol/administração & dosagem , Masculino , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Camundongos Endogâmicos C57BL , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/administração & dosagem , Anestesia/métodos
4.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711117

RESUMO

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Assuntos
Dexmedetomidina , Microbioma Gastrointestinal , Homeostase , Estresse Psicológico , Animais , Dexmedetomidina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Homeostase/efeitos dos fármacos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Ansiedade/tratamento farmacológico
5.
Eur Rev Med Pharmacol Sci ; 28(6): 2501-2508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567610

RESUMO

OBJECTIVE: This study aimed to analyze the histopathological and biochemical effects of dexmedetomidine on the rat uteri exposed to experimental ischemia-reperfusion injury. MATERIALS AND METHODS: Twenty-four female rats were randomly divided into three groups. Group 1 was defined as the control group. An experimental uterine ischemia-reperfusion model was created in Group 2. Group 3 was assigned as the treatment group. Similar uterine ischemia-reperfusion models were created for the rats in Group 3, and then, unlike the other groups, 100 µg/kg of dexmedetomidine was administered intraperitoneally immediately after the onset of reperfusion. In blood biochemical analysis, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA), interleukin 1beta (IL-1ß), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were measured. In the histopathological analyses, endometrial epithelial glandular changes (leukocytosis, cell degeneration) and endometrial stromal changes (congestion, edema) were analyzed using the tissue damage scoring system. RESULTS: It was observed that IL-1ß, IL-6, and TNF-α levels were significantly suppressed in Group 3 compared to Group 2 (p=0.001, p<0.001 and p=0.001, respectively). MDA level was noted as the highest in Group 2. The MDA value in Group 3 was measured at 5.37±0.82, which was significantly decreased compared to Group 2 (p<0.001). An increase in antioxidant enzyme activities (SOD and GSH-PX) was observed in Group 3 compared to Group 2 (p=0.001 and p=0.006, respectively). In our histopathological analysis, a significant improvement in endometrial epithelial glandular and endometrial stromal changes was revealed in Group 3 compared to Group 2 (p<0.001). CONCLUSIONS: In our study, it has been documented that dexmedetomidine protects the uterine tissue against ischemia-reperfusion injury.


Assuntos
Dexmedetomidina , Traumatismo por Reperfusão , Ratos , Feminino , Animais , Dexmedetomidina/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Interleucina-6 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Antioxidantes/farmacologia , Isquemia , Útero , Superóxido Dismutase , Malondialdeído/análise
6.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654299

RESUMO

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Assuntos
Sistema Glinfático , Traumatismo por Reperfusão , Animais , Sistema Glinfático/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Dexmedetomidina/farmacologia , Acidente Vascular Cerebral , Anestesia , Isoflurano/farmacologia , Nanopartículas/química , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/química
7.
Discov Med ; 36(183): 714-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665020

RESUMO

BACKGROUND: Spinal cord injury (SCI) is usually caused by external direct or indirect factors, and with a high morbidity and mortality rate. The aim of this study was to observe the effects of Dexmedetomidine (DEX) combined with Esketamine (ESK) on pain behavior and potential analgesic mechanisms in rats with SCI. The goal was to provide a reliable multimodal analgesic medication regimen for SCI. METHODS: Thirty rats were divided into five groups with six rats in each group: Sham group, SCI group, DEX group, ESK group, and DEX+ESK group. The SCI model in rats was constructed, and the motor function of hind limbs of rats was measured using Basso Beattie Bresnahan (BBB) locomotor rating scale and inclined plate test. The levels of interleukin 18 (IL-18), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in the spinal cord were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of substance P (SP), neurokinin-1 receptor (NK-1R), B cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) in the rats' spinal cord were measured by Western blot assay. The viability of spinal astrocytes was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: After 7 days, the BBB scores were significantly higher in the DEX, ESK, and DEX+ESK groups compared to the SCI group (p < 0.01). Additionally, the DEX+ESK group had significantly higher scores than both the DEX and ESK groups (p < 0.01). The maximum angle of the DEX (p < 0.05), ESK (p < 0.05), and DEX+ESK groups (p < 0.01) were higher than the SCI group, and the maximum angle of DEX+ESK group was higher than DEX and ESK groups (p < 0.05). The levels of IL-18, IL-1ß, and TNF-α in the DEX, ESK, and DEX+ESK groups were lower than the SCI group (p < 0.01), while the DEX+ESK group had significantly lower IL-18, IL-1ß, and TNF-α levels than the DEX and ESK groups (p < 0.01). The levels of SP (p < 0.01) and NK-1R (p < 0.05) were lower in the DEX, ESK, and DEX+ESK groups compared to the SCI group, and the levels of SP and NK-1R were lower in the DEX+ESK group compared to the DEX and ESK groups (p < 0.01). The DEX and ESK groups suppressed the activity of spinal astrocytes (p < 0.01), however, the DEX+ESK group had larger effects on spinal astrocytes than the ESK group (p < 0.05). CONCLUSIONS: Treatment using DEX combined with ESK improves the motor function, inhibits inflammation and astrocyte activity, and exerts analgesic effects on rats with SCI. These findings can serve as a reference for the selection of multi-modal analgesics.


Assuntos
Dexmedetomidina , Ketamina , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Ratos , Ketamina/farmacologia , Ketamina/uso terapêutico , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Substância P/metabolismo , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Receptores da Neurocinina-1/metabolismo , Interleucina-1beta/metabolismo
8.
Drug Des Devel Ther ; 18: 1103-1114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618283

RESUMO

Purpose: Intravenous regional anesthesia (IVRA) using lidocaine provides effective localized analgesia but its duration is limited. The mechanism by which dexmedetomidine enhances lidocaine IVRA is unclear but may involve modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Materials and Methods: Lidocaine IVRA with varying dexmedetomidine concentrations was performed in the tails of Sprague-Dawley rats. Tail-flick and tail-clamping tests assessed IVRA analgesia and anesthesia efficacy and duration. Contributions of α2 adrenergic receptors and HCN channels were evaluated by incorporating an α adrenergic receptor antagonist, the HCN channel inhibitor ZD7288, and the HCN channel agonist forskolin. Furthermore, whole-cell patch clamp electrophysiology quantified the effects of dexmedetomidine on HCN channels mediating hyperpolarization-activated cation current (Ih) in isolated dorsal root ganglion neurons. Results: Dexmedetomidine dose-dependently extended lidocaine IVRA duration and analgesia, unaffected by α2 receptor blockade. The HCN channel inhibitor ZD7288 also prolonged lidocaine IVRA effects, while the HCN channel activator forskolin shortened effects. In dorsal root ganglion neurons, dexmedetomidine concentration-dependently inhibited Ih amplitude and shifted the voltage-dependence of HCN channel activation. Conclusion: Dexmedetomidine prolongs lidocaine IVRA duration by directly inhibiting HCN channel activity, independent of α2 adrenergic receptor activation. This HCN channel inhibition represents a novel mechanism underlying the anesthetic and analgesic adjuvant effects of dexmedetomidine in IVRA.


Assuntos
Anestesia por Condução , Dexmedetomidina , Ratos , Animais , Lidocaína/farmacologia , Dexmedetomidina/farmacologia , Ratos Sprague-Dawley , Colforsina , Cátions
9.
Drug Des Devel Ther ; 18: 1231-1245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645991

RESUMO

Background and Aim: Ultrasound popliteal sciatic nerve block (UPSNB) is commonly performed in foot and ankle surgery. This study aims to assess the use of dexmedetomidine and dexamethasone as adjuvants in UPSNB for hallux valgus (HV) surgery, comparing their efficacy in producing motor and sensory block and controlling postoperative pain. The adverse event rate was also evaluated. Methods: This mono-centric retrospective study included 62 adult patients undergoing HV surgery: 30 patients received lidocaine 2% 200 mg, ropivacaine 0.5% 50 mg and dexamethasone 4 mg (Group 1), whereas 32 patients received lidocaine 2% 200 mg, ropivacaine 0.5% 50 mg, and dexmedetomidine 1 mcg/Kg (Group 2). At first, the visual analogue scale (VAS) was evaluated after 48 hours. The other outcomes were time to motor block regression, evaluation of the first analgesic drug intake, analgesic effect, adverse effects (hemodynamic disorders, postoperative nausea and vomiting (PONV)) and patient satisfaction. The continuous data were analyzed with student's t-test and the continuous one with χ2. Statistical significance was set at a p-value lower than 0.05. Results: No significant difference was found in VAS after 48 hours (4.5 ± 1.6 vs 4.7 ± 1.7, p = 0.621) to motor block regression (18.9 ± 6.0 vs 18.7 ± 6, p = 0.922). The number of patients that took their first analgesic drug in the first 48 h (p = 0.947 at 6 hours; p = 0.421 at 12 hours; p = 0.122 at 24 hours and p = 0.333 at 48 hours) were not significant. A low and similar incidence of intraoperative hemodynamic disorders was recorded in both groups (hypotension p = 0.593; bradycardia p = 0.881). Neither PONV nor other complication was found. Patients in Group 1 reported a lower degree of interference with sleep (p = 0.001), less interference with daily activities (P = 0.002) and with the affective sphere (P = 0.015) along with a more satisfactory postoperative pain management (p < 0.001) as compared to Group 2. Conclusion: No significant differences were observed in the duration of motor and sensory blockade between patients in both groups. Additionally, both groups showed good pain control with a low rate of adverse effects, even if there was no clinical difference between the groups. However, patients who received dexamethasone reported experiencing less interference with their sleep, daily activities and overall emotional well-being, and overall pain control.


Assuntos
Dexametasona , Dexmedetomidina , Hallux Valgus , Bloqueio Nervoso , Nervo Isquiático , Humanos , Dexametasona/administração & dosagem , Estudos Retrospectivos , Hallux Valgus/cirurgia , Dexmedetomidina/administração & dosagem , Dexmedetomidina/farmacologia , Masculino , Feminino , Bloqueio Nervoso/métodos , Pessoa de Meia-Idade , Adulto , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Ultrassonografia
10.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681208

RESUMO

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Assuntos
Dexmedetomidina , Endotoxemia , Ferroptose , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Propofol , Dexmedetomidina/farmacologia , Animais , Propofol/farmacologia , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Endotoxemia/induzido quimicamente , Lipopolissacarídeos/farmacologia , Relação Dose-Resposta a Droga , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Encefalopatias/patologia , Hipnóticos e Sedativos/farmacologia
11.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38580536

RESUMO

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Assuntos
Dexmedetomidina , Isoflurano , Metadona , Propofol , Pirazóis , Animais , Cães , Dexmedetomidina/administração & dosagem , Dexmedetomidina/farmacologia , Propofol/administração & dosagem , Propofol/farmacologia , Metadona/administração & dosagem , Metadona/farmacologia , Feminino , Isoflurano/administração & dosagem , Isoflurano/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Pressão Sanguínea/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Quinolizinas/farmacologia , Quinolizinas/administração & dosagem , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Pré-Medicação/veterinária
12.
Res Vet Sci ; 172: 105254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582048

RESUMO

Two randomized crossover trials evaluated the effects of nicardipine constant rate infusion (CRI) on 1) the anesthetic potency of sevoflurane and 2) the ability to attenuate dexmedetomidine-induced cardiovascular depression in anesthetized dogs. First, six healthy Beagle dogs weighing 11.7 ± 0.9 kg were allocated to one of three treatments that administered a CRI of carrier (saline) or dexmedetomidine 0.5 or 3.0 µg/kg/h following a loading dose. The minimum alveolar concentration (MAC) of sevoflurane was determined utilizing electric stimuli before and after the loading dose of nicardipine (20 µg/kg intravenously for 10 min), followed by CRI at 40 µg/kg/h with 60 min of equilibration. Subsequently, cardiovascular and blood gas variables were evaluated in another trial under sevoflurane anesthesia at the individual 1.5 MAC. After baseline measurements, the dogs were assigned to two treatments (dexmedetomidine CRI at 0.5 or 3.0 µg/kg/h following a loading dose) with sevoflurane doses adjusted to 1.5 times of MAC equivalent, and the measurements were repeated every 15 min for 120 min. After 60 min, nicardipine CRI at 40 µg/kg/h with a loading dose was added to the dexmedetomidine CRI. Dexmedetomidine infusions significantly decreased the sevoflurane MAC but nicardipine did not significantly alter the MAC either with or without dexmedetomidine CRI in dogs. Dexmedetomidine dose-dependently decreased the cardiac index and increased the systemic vascular resistance index; these effects were fully counteracted by concomitant nicardipine CRI. Nicardipine CRI can be useful for controlling the cardiovascular depression elicited by dexmedetomidine in anesthetized dogs without affecting the anesthetic potency of sevoflurane.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Nicardipino , Sevoflurano , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/administração & dosagem , Cães , Sevoflurano/farmacologia , Sevoflurano/administração & dosagem , Nicardipino/farmacologia , Nicardipino/administração & dosagem , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/administração & dosagem , Masculino , Estudos Cross-Over , Feminino , Alvéolos Pulmonares/efeitos dos fármacos , Infusões Intravenosas/veterinária , Frequência Cardíaca/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos
13.
Immun Inflamm Dis ; 12(3): e1218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483030

RESUMO

BACKGROUND: Anesthetic agents, particularly intravenous anesthetics, may affect immune function and tumorigenic factors. We herein investigated whether the anti-inflammatory effects of anesthetic agents are attributed to their antioxidant properties. The antioxidant and anti-inflammatory effects of remimazolam, a new anesthetic, remain unclear. We hypothesized that remimazolam exerts anti-inflammatory effects due to its antioxidant properties, which may affect the postoperative inflammatory response. This retrospective clinical study examined this hypothesis using laboratory and clinical approaches. METHODS: The antioxidant effects of remimazolam and dexmedetomidine were assessed by electron spin resonance (ESR) spectroscopy, and postoperative inflammatory responses were compared in 143 patients who underwent transcatheter aortic valve replacement at Kindai University Hospital between April 2021 and December 2022. The primary endpoint was the presence or absence of the antioxidant effects of the anesthetics themselves using ESR. RESULTS: Remimazolam at clinical concentrations exerted antioxidant effects, whereas dexmedetomidine did not. Increases in C-reactive protein (CRP) levels on POD3 from preoperative values were significantly smaller in the remimazolam group than in the dexmedetomidine group (1.33 ± 1.29 vs. 2.17 ± 1.84, p = .014). CONCLUSIONS: Remimazolam exerted stronger anti-inflammatory effects than dexmedetomidine, and these effects were enhanced by its antioxidant properties, which may have affected postoperative CRP production.


Assuntos
Anestésicos , Benzodiazepinas , Dexmedetomidina , Humanos , Antioxidantes/farmacologia , Dexmedetomidina/farmacologia , Estudos Retrospectivos , Anti-Inflamatórios/farmacologia
14.
Actas Esp Psiquiatr ; 52(1): 19-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38454897

RESUMO

BACKGROUND: The protective mechanism of dexmedetomidine on the brains of patients undergoing craniocerebral surgery remains unclear. The aim of this study was to examine the impact of dexmedetomidine on cognitive function, oxidative stress, and brain protection in such patients. METHODS: Fifty-four patients who underwent craniocerebral surgery at our hospital from January 2020 to June 2023 were retrospectively selected as study subjects. They were divided into two groups: the control group (n = 27) and the study group (n = 27), based on different auxiliary anesthesia protocols. Patients in the study group received dexmedetomidine before anesthesia induction, using a midline intravenous pump to assist anesthesia, while the control group received an equivalent amount of normal saline. The remaining anesthesia induction and maintenance protocols were consistent for both groups. Cognitive function was assessed using the Mini Mental State Examination (MMSE) before and 1 day after surgery for both groups. Oxidative stress indicators, including malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels in the serum of both groups, were measured using enzyme-linked immunosorbent assay (ELISA). Additionally, changes in postoperative brain injury indicators, namely neuron-specific enolase (NSE) and central nervous system-specific protein (S100ß), were detected and compared in the serum of both groups. Concurrently, postoperative adverse reactions were recorded for both groups. RESULTS: The MMSE scale scores of both groups of patients 24 hours after surgery were significantly lower than those before surgery. However, the MMSE scale scores of the study group patients were notably higher than those in the control group, with a statistically significant difference (p < 0.05). One hour after surgery, the serum levels of MDA, GSH-Px, and SOD in both groups of patients were significantly elevated compared to pre-surgery levels. Yet, the study group exhibited significantly lower levels of MDA, GSH-Px, and SOD in comparison to the control group, and these differences were statistically significant (p < 0.05). The serum levels of NSE and S100ß in both groups were markedly higher than preoperative levels 24 hours after surgery. However, the study group demonstrated significantly lower levels of serum NSE and S100ß compared to the control group, with a statistically significant difference (p < 0.05). The incidence of postoperative complications in the study group was 7.41% (2/27), indicating a decreasing trend compared to 18.52% (5/27) in the control group. However, this difference did not reach statistical significance (χ2 = 1.477, p = 0.224). CONCLUSION: Dexmedetomidine-assisted anesthesia in craniocerebral surgery can effectively enhance postoperative cognitive function, mitigate oxidative stress, and facilitate overall postoperative recovery for patients. The intervention exhibits a favorable safety profile with no reported serious adverse reactions, establishing it as a relatively safe and reliable approach.


Assuntos
Dexmedetomidina , Humanos , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , Estudos Retrospectivos , Cognição , Estresse Oxidativo , Encéfalo , Superóxido Dismutase/farmacologia
15.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474263

RESUMO

Dexmedetomidine is widely used to induce sedation in the perioperative period. This study examined the effect of hypothermia (33 and 25 °C) on dexmedetomidine-induced contraction in an endothelium-intact aorta with or without the nitric oxide synthase inhibitor NW-nitro-L-arginine methyl ester (L-NAME). In addition, the effect of hypothermia on the contraction induced by dexmedetomidine in an endothelium-denuded aorta with or without a calcium-free Krebs solution was examined. The effects of hypothermia on the protein kinase C (PKC), myosin light chain (MLC20) phosphorylation, and Rho-kinase membrane translocation induced by dexmedetomidine were examined. Hypothermia inhibited dexmedetomidine-induced contraction in the endothelium-intact aorta with L-NAME or endothelium-denuded aorta. Hypothermia had almost no effect on the dexmedetomidine-induced contraction in the endothelium-denuded aorta with the calcium-free Krebs solution; however, the subsequent contraction induced by the addition of calcium was inhibited by hypothermia. Conversely, the transition from profound hypothermia back to normothermia reversed the hypothermia-induced inhibition of subsequent calcium-induced contractions. Hypothermia inhibited any contraction induced by KCl, PDBu, and NaF, as well as PKC and MLC20 phosphorylation and Rho-kinase membrane translocation induced by dexmedetomidine. These results suggest that hypothermia inhibits dexmedetomidine-induced contraction, which is mediated mainly by the impediment of calcium influx and partially by the attenuation of pathways involving PKC and Rho-kinase activation.


Assuntos
Dexmedetomidina , Hipotermia , Ratos , Animais , Dexmedetomidina/farmacologia , Quinases Associadas a rho/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Cálcio/metabolismo , Hipotermia/metabolismo , Proteína Quinase C/metabolismo , Endotélio Vascular/metabolismo , Contração Muscular
16.
J Zoo Wildl Med ; 55(1): 102-110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453493

RESUMO

The Houston toad (Anaxyrus houstonensis), a primarily terrestrial amphibian of south-central Texas, has been listed as federally endangered since 1970. Sedation is an important tool for obtaining diagnostics and providing treatment in this species. This prospective, randomized, and blinded study compared the sedative effects of SC alfaxalone (Protocol A) at approximately 12 mg/kg (median [range] = 12.70 [12.09-13.95] mg/kg] to SC alfaxalone-dexmedetomidine (Protocol AD) at approximately 12 mg/kg (median [range] = 12.68 [12.16-13.56] mg/kg) and 0.1 mg/kg (median [range] = 0.1 [0.07-0.13] mg/kg), respectively, in adult Houston toads (n = 26). Toads from Protocol AD received atipamezole SC at approximately 1 mg/kg (median [range] = 0.96 [0.75-1.25] mg/kg) 45 min postinduction, whereas toads from Protocol A received the equivalent volume of SC sterile saline at the same time point. Heart rate, gular rate, and times to first effect, loss of righting reflex, ability to position for radiographs, loss of nociception, return of righting reflex, and full recovery were recorded. A significantly greater number of toads lost righting reflex, positioned for radiographs, and lost nociception with Protocol AD compared with Protocol A. Additionally, time to return of righting reflex and time to full recovery were significantly longer with Protocol AD than with Protocol A. The protocols did not differ significantly in time to first effect, time to radiographic positioning, or time to loss of nociception. Histologic examination of four toads euthanized during the study revealed acute injection site reactions from all administered drugs, including saline. No clinical adverse reactions were observed. This study demonstrates that the combination of SC alfaxalone and dexmedetomidine results in deeper sedation than SC alfaxalone alone, but also correlates with longer recovery times despite antagonist administration.


Assuntos
Anestesia , Anestésicos , Dexmedetomidina , Pregnanodionas , Animais , Dexmedetomidina/farmacologia , Anestésicos/farmacologia , Estudos Prospectivos , Anestesia/métodos , Anestesia/veterinária , Hipnóticos e Sedativos/farmacologia , Pregnanodionas/farmacologia
17.
Res Vet Sci ; 171: 105207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460204

RESUMO

This double-blinded randomized cross-over study compared the muscle tissue oxygen saturation (StO2) measured at the sartorius muscle after intramuscular (IM) injection of dexmedetomidine hydrochloride (HCl) and co-administration of vatinoxan HCl, a peripheral α2-adrenoceptor antagonist, and medetomidine HCl in healthy privately-owned dogs undergoing intradermal testing (IDAT). After written owner consent, dogs received IM injections of either dexmedetomidine (0.5 mg/m2, DEX) or medetomidine (1 mg/m2) and vatinoxan (20 mg/m2) (MVX). Once sedated, intradermal injections were given on the lateral thorax of each dog, and the study was repeated with the alternative sedation on the opposite side one week later. At the end of the study, sedation was reversed with atipamezole (5 mg/m2). Depth of sedation, cardiopulmonary parameters, StO2, and rectal temperature were recorded and compared using mixed effect linear models (α ≤ 0.05). MVX achieved adequate sedation faster [median (interquartile range), 10 (8, 10) minutes] compared to DEX [18 (15, 22) minutes; hazard ratio = 7.44, p = 0.013), with higher scores at 10- and 15-min post-injection. StO2 was significantly reduced for 30 min after injection (p < 0.001), independently of the treatment (p = 0.68). Cardiopulmonary variables favored MVX. However, higher heart rate did not correlate with improved StO2. There was no difference in either subjective or objective assessment of the wheal size between sedations (p > 0.05). Both sedation protocols, MVX and DEX, were deemed suitable for IDAT in dogs, with mild reductions in StO2 measured at the sartorius muscle that were not significantly different between treatments.


Assuntos
Dexmedetomidina , Medetomidina , Quinolizinas , Cães , Animais , Medetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Dexmedetomidina/farmacologia , Frequência Cardíaca , Injeções Intramusculares/veterinária , Músculos , Estudos Cross-Over
18.
Oncoimmunology ; 13(1): 2327143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481729

RESUMO

Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that is widely used in intensive and anesthetic care for its sedative and anxiolytic properties. DEX has the capacity to alleviate inflammatory pain while limiting immunosuppressive glucocorticoid stress during major surgery, thus harboring therapeutic benefits for oncological procedures. Recently, the molecular mechanisms of DEX-mediated anticancer effects have been partially deciphered. Together with additional preclinical data, these mechanistic insights support the hypothesis that DEX-induced therapeutic benefits are mediated via the stimulation of adaptive anti-tumor immune responses. Similarly, published clinical trials including ancillary studies described an immunostimulatory role of DEX during the perioperative period of cancer surgery. The impact of DEX on long-term patient survival remains elusive. Nevertheless, DEX-mediated immunostimulation offers an interesting therapeutic option for onco-anesthesia. Our present review comprehensively summarizes data from preclinical and clinical studies as well as from ongoing trials with a distinct focus on the role of DEX in overcoming (tumor microenvironment (TME)-imposed) cancer therapy resistance. The objective of this update is to guide clinicians in their choice toward immunostimulatory onco-anesthetic agents that have the capacity to improve disease outcome.


Assuntos
Dexmedetomidina , Neoplasias , Humanos , Dexmedetomidina/uso terapêutico , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Neoplasias/tratamento farmacológico , Ensaios Clínicos como Assunto
19.
Ann Clin Lab Sci ; 54(1): 86-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514063

RESUMO

OBJECTIVE: To observe the effect of dexmedetomidine (Dex) on propofol infusion syndrome (PRIS)-induced myocardial injury and explore the roles of ferroptosis and accumulation of reactive oxygen species (ROS). METHODS: Eighteen male Sprague-Dawley rats were evenly divided into the control group, model group and test group (n=6/group) based on a computer-generated random number table. The PRIS-induced myocardial injury model was prepared in the model group and test group through a 12 h-caudal vein infusion of 1% propofol medium and long chain fat emulsion injection at a rate of 20 mg·Kg-1·h-1 for the first 6 h and 40 mg·Kg-1·h--1 for the last 6 h, and meanwhile the test group was treated by Dex. The control group received the same amount of normal saline through the caudal vein. The following indicators were compared between the three groups including myocardial pathological results, enzymatic changes of myocardial injury, ferroptosis of myocardial cells and accumulation of ROS. RESULTS: Dex alleviated the myocardial pathological injury caused by propofol infusion. Propofol infusion caused time-dependent enzymatic changes of myocardial injury and Dex alleviated these enzymatic changes. Dex alleviated the ferroptosis of myocardial cells and accumulation of ROS caused by propofol infusion. CONCLUSIONS: Dex could alleviate PRIS-induced myocardial injury by inhibiting ferroptosis associated with accumulation of ROS. Combined sedation using propofol and Dex might be a potential strategy for the prevention and treatment of PRIS-induced cardiotoxicity.


Assuntos
Dexmedetomidina , Ferroptose , Síndrome da Infusão de Propofol , Propofol , Ratos , Animais , Masculino , Propofol/farmacologia , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley
20.
Biomed Pharmacother ; 174: 116462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513598

RESUMO

BACKGROUND: Acute kidney injury (AKI) was reported to be one of the initiators of chronic kidney disease (CKD) development. Necroinflammation may contribute to the progression from AKI to CKD. Dexmedetomidine (Dex), a highly selective α2-adrenoreceptor (AR) agonist, has cytoprotective and "anti-" inflammation effects. This study was designed to investigate the anti-fibrotic properties of Dex in sepsis models. METHODS: C57BL/6 mice were randomly treated with an i.p. injection of lipopolysaccharides (LPS) (10 mg/kg) alone, LPS with Dex (25 µg/kg), or LPS, Dex and Atipamezole (Atip, an α2-adrenoreceptor antagonist) (500 µg/kg) (n=5/group). Human proximal tubular epithelial cells (HK2) were also cultured and then exposed to LPS (1 µg/ml) alone, LPS and Dex (1 µM), transforming growth factor-beta 1 (TGF-ß1) (5 ng/ml) alone, TGF-ß1 and Dex, with or without Atip (100 µM) in culture media. Epithelial-mesenchymal transition (EMT), cell necrosis, necroptosis and pyroptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were then determined. RESULTS: Dex treatment significantly alleviated LPS-induced AKI, myofibroblast activation, NLRP3 inflammasome activation, and necroptosis in mice. Atip counteracted its protective effects. Dex attenuated LPS or TGF-ß1 induced EMT and also prevented necrosis, necroptosis, and pyroptosis in response to LPS stimulation in the HK2 cells. The anti-EMT effects of Dex were associated with JNK phosphorylation. CONCLUSIONS: Dex reduced EMT following LPS stimulation whilst simultaneously inhibiting pyroptosis and necroptosis via α2-AR activation in the renal tubular cells. The "anti-fibrotic" and cytoprotective properties and its clinical use of Dex need to be further studied.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Dexmedetomidina , Fibrose , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos alfa 2 , Animais , Humanos , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Linhagem Celular , Dexmedetomidina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Necroptose/efeitos dos fármacos , Fenótipo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA